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Computational modelling of light propagation in textured liquid
crystals based on the finite-difference time-domain (FDTD) method

DAE KUN HWANG and ALEJANDRO D. REY*

Department of Chemical Engineering, McGill University, 3610 University Street, Montreal,

Quebec, Canada H3A 2B2

(Received 13 May 2004; accepted 18 October 2004 )

Light propagation through uniaxial rod-like nematic liquid crystal films containing singular
(thin) and non-singular (thick) line disclinations is computed using the finite-difference time-
domain method (FDTD), which is based on accurate numerical solutions to the governing
Maxwell equations. The results obtained by the FDTD method are compared with classical
matrix-type methods, including the aggregate model and Berreman’s method. It is found that
the optical signals for singular and non-singular defects predicted by the matrix methods
deviate significantly from the FDTD method because director gradient effects on the plane
normal to the incident light are not properly taken into account . It is also found that the
FDTD optical signal for singular thin lines has a characteristic length scale associated with
the wavelength of the incident light, while for non-singular thick lines the scale is associated
with the defect escaped core dimensions. The FDTD method offers an accurate quantitative
tool for use in new applications including liquid crystal-based biosensors and rheo-optical
characterization of liquid crystalline polymers.

1. Introduction

The optical properties of low molar mass liquid crystals

(LCs) form the basis of most of their applications in

display devices [1]. Properly designed substrates (surface

fields) are highly efficient in aligning and producing

defect-free nematic liquid crystal (NLC) films. The

application of this ability has spawned the entire liquid

crystal display (LCD) industry. As a consequence,

research in the surface science of liquid crystals has

received the most attention and resources in this field.

Since the proper functioning of most LCDs relies on the

formation of defect-free layers, physicochemical surface

treatments of many different substrates have been

developed. In general, isotropic untreated surfaces,

such as glass, give rise to defect textures due to the

lack of a unique and sufficiently strong orienting surface

field. The ability optically to detect the transformation

of the surface field of a substrate by physicochemical

processes can be the basis of signal generation in a

sensor device. Placing a NLC film between two

substrates produces a texture whose optical res-

ponse to linearly polarized light, when viewed between

crossed polarizers, is unique and quantifiable; thus

the key characteristics (i.e. surface topology, surface

charge, chemical composition, heterogeneity) of any

physiochemical surface process that creates textural

changes in NLC films is detectable and quantifiable.

Abbott and Skaife have developed a new biosensor

device that quantitatively detects the presence of

complex biomolecules based on the optical response of

liquid crystal films deposited on nano-structured sub-
strates [2, 3]. This device shows many potential

advantages over currently used biosensor devices in

terms of the response time, simplicity and expense. The

device also shows high capabilities of selectivity,

sensitivity and accuracy, which are critical factors for

biosensors. The device is based on surface-induced

texture generation in thin NLC films formed between

protein-coated substrates. In the absence of protein
coating, the nano-strucured substrates induce defect-

free NLC monodomains, while substrates with

adsorbed protein produce characteristic NLC textures.

By measuring the intensity of transmitted optical

polarized light when placing the film between crossed

polarizers, a quantitative relation between the optical

signal and the amount of adsorbed protein is estab-

lished. In spite of the successful quantifications based
on the optical signals of the LC textures induced by the

bounding events of the biomolecules on the substrates,

the relationships between the surface-induced LC

textures and the bounding events of the biomolecules

on the surface are not fully understood.

The characterization of thermotropic and lyotropic

liquid crystal polymers (LCPs) used in the production of

fibres and films, is based on rheo-optical measurements*Corresponding author. Email: alejandro.rey@mcgill.ca
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[4]. Flow-induced textural transformations are asso-

ciated with certain viscosity reduction mechanisms as

the shear rate increases. The underlying director field

and defect distribution that defines the texture is

imprinted on the optical signal when viewing the

flowing polymer under crossed polarizers, but at present

the relation between optcal signal and textural details

remains poorly understood, basically due to lack of

computational modelling studies. These two examples

show the great need for computational modelling of

light propagation in heterogeneous and textured LCs

for quantitative characterization of surface- and

flow-driven texturing processes.

Many optical methods for light propagation through

LCs cells have been proposed in order to determine

optical properties of the LCs and improve devices based

on LC optics. Since the first introduction of the Jones

262 matrix method [5], matrix-type methods based on

the stratified-medium approach have been widely used

for optical simulation of LC optics due to its simplicity.

The main application of matrix-type methods has been

in LC display devices. However, multiple reflections due

to the existence of different media are neglected in the

Jones 262 matrix method which is also restricted only

to the normal incidence case. To overcome the

limitations, Berreman introduced the 464 matrix

method accounting for multiple reflections and oblique

incidence cases [6]. Later, extensions of the Jones matrix

method were formulated to overcome multiple reflec-

tions [7], and oblique incidence cases [8]. In spite of

these improvements, another major restriction remains

in the matrix-type methods due to the assumption that

the variation of the dielectric tensor occurs only along

the direction of wave propagation [5–7]. In the matrix-

type methods, a computational domain is divided into a

finite number of layers and the dielectric tensor is

assumed to be uniform in each layer. The accuracy of

the methods therefore depends on the size of the layer.

These methods are still valuable for LC display device

applications when each individual pixel exceeds the

extent of many optical wavelengths and there is a slow

variation of LC orientation along the transverse

directions [9]. Consequently, most applications of the

matrix-type methods are one-dimensional problems in

which the only allowed spatial variation is along the

normal to the LC displays [8, 10–12]. However, a

significant number of currently evolving LC display

devices such as small-sized pixels for head-mounted

displays, pixel edges, and multi-domain LC displays

in which the pixel size becomes very small, the

homogeneity along the pixel reduces, and domains with

different director orientations can occur [13, 14]. In

addition to the advanced display devices, biosensor

applications on NLCs and rheo-optical characterization

of LCPs all require computational modelling using

optical methods that resolve multi-dimensional and

multi-scale spatial heterogeneities.

Small molar mass NLC textures, containing point

and lines defects, were simulated by Nicholson using the

aggregate model, which is similar to the Jones matrix

method [15]. In this method a three-dimensional

computation domain is divided into finite cubic lattices

of uniform dielectric permitivity tensor. A similar

approach is used for simulation of textures in LC

droplets [16]. This approach may not be qualitatively

rigorous for optical simulation of the LC defects, since

there is strong variation of the director field over small

length scales in more than one dimension. Analysis

textures in biosensors and rheo-optical devices, contain-

ing small scale multi-dimensional heterogeneities in the

director field require refined and rigorous numerical

methods for electromagnetic propagation.

The finite-difference time-domain (FDTD) method is

a rigorous numerical method used to solve Maxwell’s

curl equations and is an efficient tool for simulation of

light propagation in LCs containing complex textures.

Since the first introduction of the FDTD method by

Yee [17], it has been implemented in an electromagnetic

field such as light propagation, scattering, guiding, and

inverse scattering in arbitrary structures and in homo-

geneous or anisotropic materials [18]. The major

improvement of the FDTD method in terms of accuracy

and efficiency came after Berenger [19] proposed the

perfectly matched layer (PML) instead of the conven-

tional Mur [20] absorbing boundary for efficient

truncation of computational domains. Despite wide-

spread use of the FDTD method, its application to LC

optics has only recently been introduced. Two-

dimensional wave propagation in a twisted nematic

display was determined using the FDTD method [21],

and its accuracy was assessed against the analytical

solution in the one-dimensional twisted nematic struc-

ture [22]. More advanced work on two-dimensional

wave propagation in a LC display containing bend/

splay and titled/twisted deformations in LC devices, and

domain-walls in ferroelectric LC devices [13, 14, 23]

have been conducted. The application of the FDTD

method was recently expanded to 3D wave propagation

in LC devices [24]; even though, its use for simulation of

LC optics has been successfully proven, it has not been

fully explored in LC films containing various types of

defects such as those observed in Abbot’s biosensor

device and in rheo-optical devices.

The objective of this paper is to determine wave

propagation in uniaxial nematic LCs containing

simple defects using the FDTD method. The results

484 D. K. Hwang and A. D. Rey

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



obtained are compared with matrix-type methods,

including the aggregate model and the Berreman

method. For the purpose of comparison with the

aggregate model results [15], only the normal incident

case is considered in our study. Having established the

accuracy and resolution of the LC FDTD method for

single defects, later work will report on LC optics of

high density textures.

2. Light transmission models

In this section we present the three basic light

transmission models used to compute the optical

response of uniaxial NLC films: (i) the aggregate model

[15, 16, 25], (ii) the Berreman method [11, 26, 27]

and (iii) the FDTD method [28]. The actual computa-

tional process (i.e. matrix computations, evaluations

of discrete calculus terms, etc.) for each method is

given in § 3. In the three cases we consider a NLC

thin film placed between crossed polarizers, and

only the main equations and procedures are

discussed in detail. The average molecular orientation

is defined by the unit vector n known as the director, or

optic axis.

2.1. The aggregate model

The computational space for the NLC film is divided

into a set of uniaxial finite cubic lattices, of a uniform

dielectric constant [15, 16]. The computational space in

the aggregate model is illustrated in figure 1. The

propagation direction is the z direction. The optic axis

is only a function of z: n5n(z).

Monochromatic incident light, which has a complex

time dependency E5Eoexp (ivt), is introduced to the

computational space, where Eo is the magnitude and v
is the angular frequency. The known tangential

components of the polarized light Exp and Eyp after

the incident light E5Eoexp (ivt) passes through the

ideal polarizer which is parallel to the x direction is

computed using:

Exp

Eyp

� �
~

sin hp

cos hp

� �
Eo exp ivtð Þ ð1Þ

where hp is the direction of the polarizer with respect to

the x direction. The polarized incident light propagates

through the cubic cells in two mutually orthogonal

directions; the direction parallel to the optic axis is

called the extraordinary ray and the direction perpendi-

cular to the optic axis is called the ordinary ray. Due to

the variation of the optic axis and the birefringence of

the NLC film, the polarized light experiences rotation

and phase shift within the NLC film. The emerging light

from the first cubic cell in a column, after taking into

account the rotation and retardation, is computed as

follows:

Ex1

Ey1

� �
~

Eo cos w1 exp ivtð Þexp {id1ð Þ
Eo sin w1 exp ivtð Þ

� �
ð2Þ

where d1 is the phase retardation due to the tilt angle of

the optical axis with respect to the xy plane, w1 is the

azimuthal angle of the optic axis with respect to the x

direction, and the subscript 1 indicates the first cubic

cell in the column. Further rotation and phase lag of the

light emerging from the first lattice cell occurs within

the second cell. The emergent light from the second cell

is given by

Ex2

Ey2

" #
~

Ex1 cos w2{w1ð Þ{Ey1 sin w2{w1ð Þ
� �

exp {id2ð Þ

Ex1 sin w2{w1ð ÞzEy1 cos w2{w1ð Þ
� �
" #

:

ð3Þ

Finally, the sequential procedure defined in

equations (2) and (3) continues to the last cubic cell in

the column in order to obtain the tangential com-

ponents of the electric field of the transmitted

light through the NLC film, Exn and Eyn, respectively.

The intensity of the exiting transmitted light I,

taking into account the presence of the analyzer, is

given by:

I~ Exn sin wnð Þ{Eyn cos wnð Þ
� �

|

Exn sin wnð Þ{Eyn cos wnð Þ
� � �

: ð4Þ

Figure 1. Schematic diagram of the computational domain
between crossed polarizers for the aggregate model, definition
of rectangular coordinate system, and direction of incident
light. In this model there are no glass substrates bounding the
nematic liquid crystal (NLC).
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More specific details of the widely used aggregate

method can be found in [15, 16, 25].

2.2. The Berreman method

Figure 2 summarizes the coordinate system and optical

components used in Berreman’s method. Two glass

layers are placed between the crossed polarizers and the

NLC film. The computational domain including the

supporting glasses is divided into finite cubic lattices, as

in the aggregate model.

The monochromatic incident light, which has the

same complex time dependency E5Eoexp(ivt) as in the

aggregate model, is introduced into the computational

space at z50. The direction of incident light is indicated

by vertical arrows in figure 2. The entire medium can

be approximated by a stack of homogeneous cubic

lattices, since each lattice is assumed to be a homogenous

medium.

The following set of linear differential equations

for the tangential components of the electric

and magnetic fields can be derived from Maxwell’s

equations:

dY

dz
~{i

v

c
D zð ÞY Y~ Ex, Hy, Ey, {Hx

� �T ð5Þ

where v is the angular frequency, c is the velocity of

light in vacuum, z is the propagation direction,

E5(Ex,Ey) is the electric field, and H5(Hx,Hy) is

the magnetic field vector. The matrix D(z) depends

mainly on the dielectric constants, the birefringence,

and the Euler angles of the local director n. The

solution of the first order linear equation (5) can be

expressed by:

Y t dð Þ~F i, nð ÞY1 0ð Þ ð6Þ

F i, nð Þ~pizn hð Þpizn{1 hð Þ . . . . . . piz1 hð Þpi hð Þ: ð7Þ

The transmitted waves yt are now obtained by use of

the total transfer matrix F. The polarization, the

retardation, and the reflection of the incident light due

to the variation of the optic axis and the existence of

different media are computed in the total transfer

matrix F within the computation domain in equa-

tion (7). The matrix F is obtained through multiplica-

tion of the local transfer matrix pi. The symbol pi

represents the local transfer matrix for the ith cubic

lattice of thickness h. Within the thickness h, the

medium is assumed to be homogeneous, so that

the local transfer matrix pi can be expressed by the

following series:

pi hð Þ~exp i
v

c
Dh

	 

~Iz

ivh

c
Dz

1

2!

ivh

c

� �2

D2z
1

3!

ivh

c

� �3

D3z . . . . . . ð8Þ

Depending on the thickness h of the lattice, the

higher order terms can be neglected in equation (8).

The main challenge of the Berreman 464 method is

to determine the transfer matrix pi that relates

the tangential components of the electrical and

magnetic field from lattice i to lattice i+1. In our

study, the local transfer matrix pi (h) is obtained with

the aid of the built-in function called ‘expm’ in Matlab

6.5 [29].

In the initial step of the computational light

transmission, the vector y1(z50) is divided into an

incident wave and a reflected wave at the surface (z50),

given by:

Y1zY inzY r ð9Þ

where the subscripts in and r indicate the incident and

reflected waves, respectively. The incident wave yin,

the reflected wave yr, and the transmitted wave Yt

which describe the electric and magnetic tangential

components, can be expressed in terms of electric

field only, since the magnetic components are propor-

tional to the corresponding orthogonal electric compo-

nents, the proportionality constant being the refractive

index of the medium which must be isotropic and of a

non-magnetic ambient medium. The general expression

of the three waves in the normal incident case is given

by:

Figure 2. Schematic diagram of the computational domain
between crossed polarizers for Berreman’s method. The
symbol h indicates the dimension of each cubic cell; d indicates
the thickness of the computation domain in the light
propagation (z) direction. Between the crossed polarizers
and the LC layer, there are two thin glass substrates.
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Y t dð Þ~

Ext

ntExt

Eyt

ntEyt

2
666664

3
777775

Y in 0ð Þ~

Exin

niExin

Eyin

niEyin

2
666664

3
777775

Y r 0ð Þ~

{Exr

nrExr

Eyr

{nrEyr

2
666664

3
777775

ð10Þ

where Exin and Eyin are the known electric components

of the incident wave, Exr, Eyr, Ext and Eyt are the electric

tangential components of the reflected and the

transmitted waves, respectively, and n indicates the

refractive index. The incident waves Exin and Eyin

are linearly polarized by the ideal polarizer which is

placed along the x direction. Based on the calculation

shown in equation (6), the solution vectors given by the

transmitted wave vectors Exn and Eyn and the reflected

wave vectors Exr and Eyr can be obtained. The intensity

of the transmitted wave is finally obtained after

considering the presence of the ideal analyzer, which is

placed along the y direction. Detailed mathematical

descriptions of the Berreman 464 method can be found

in [11, 26, 27].

2.3. The FDTD method

In this section we present the main features of the

FDTD method, especially when applied to NLC media.

Since the method has been widely described in the

textbook literature [28], here we focus only on funda-

mental issues. Light propagation for non-magnetic

materials is described by the solution to the following

Maxwell curl equations together with the appropriate

constitutive equations:

LD

Lt
~+|H ð11Þ

LB

Lt
~{+|E ð12Þ

D~eE ð13Þ

B~moH : ð14Þ

The dielectric tensor e(x, y, z) can be written in terms of

the Euler angles: the tilt angle h(x, y, z) and the

azimuthal angle w(x, y, z) [6]. Figure 3 shows the

optic axis (n), the Euler angles (h,w), the ordinary

dielectric constant eH, and extraordinary dielectric

constant e||, the latter being the components of the

dielectric tensor e.

After proper transformation, the optical dielectric

tensor e for a uniaxial medium is expressed by:

e~

e\zDe cos2 h cos2w

De cos2h sinw cosw

De sinh cosh cosw

0
BB@

De cos2h sinw cosw

e\zDe cos2h sin 2w

De sinh cosh sinw

De sinh cosh cosw

De sinh cosh sinw

e\zDe sin2h

1
CCA

ð15Þ

where De5eH2e||. Scaling the Maxwell’s curl

equations (11–14) using
~
D~1= eomoDð Þ

1
2 and

~
E~ eo

mo

	 
1
2

gives [30]:

L ~
D

Lt
~

1

eomoð Þ
1
2

+|H ð16Þ

~
D~e�

~
E ð17Þ

Figure 3. Euler angles (h,w) of optical dielectric tensor e
uniaxial ellipsoid with respect to the (x, y, z) coordinate
system. The unit vector n is the local director. The parallel and
transverse components of the dielectric tensor e are also
indicated.
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LH

Lt
~{

1

eomoð Þ
1
2

+|
~
E ð18Þ

where D is the electric flux, mo is the free space magnetic

permeability, and e* is the relative dielectric term which
can include dispersive or nonlinear material properties

[31]. In our study, NLCs are assumed to be non-

magnetic. The purpose of the normalization of the

Maxwell curl equations and of using the electric flux D

instead of the electric E field, as expressed in

equations (16–18), is to implement an unsplit perfectly

matched layer (PML) for an anisotropic medium in a

simple way, and also to implement the PML regardless
of level of complexity in the optical properties of the

medium; the PML concept is explained below. From

now on, it will be assumed that we are referring to

normalized values.

The general computational domain for the FDTD

method is shown in figure 4 (a). The Yee cell [17] as

shown in figure 4 (b), which consists of the electric and

magnetic components in a cubic lattice, is used to fill the

three-dimensional computation domain. In the Yee

algorithm, every E and H component is surrounded by

the four circulating H and E components, respectively

[28]. Since both electric and magnetic fields in time and

space are solved using the coupled Maxwell’s equations

rather than the electric field alone, the Yee algorithm

consisting of the E and H components in a staggered

grid provides a more robust solution for a wave

propagation [28].

Second order central finite differences are used to

discretize the Maxwell’s equations (16–18) in both space

and time. 3D spatial discretization follows the Yee cell.

For temporal discretization, a fully explicit leapfrog

scheme is used to update the E and H field in half time

increments, respectively [18, 30]. For example, the x

component of the dielectric displacement Dx and the

magnetic field Hx are updated by the expression:

Dxjnz1
i, j, k~Dxjn{1

i, j, kz
Dt

eomoð Þ
1
2

Hzjnz1=2

i, jz1, kz1=2
{Hzjnz1=2

i, jz1, k{1=2

Dy

 

{
Hy

nz1=2

i, jz1, kz1
{Hzjnz1=2

i, jz1=2, kz1

Dz

1
A

ð19Þ

Ex

nz1

i, j, k

 ~e� i, j, kð Þ{1
Dx

nz1

i, j, k

 ð20Þ

Hxjnz1=2

i{1=2, jz1, kz1
~Hxjn{1=2

i{1=2, jz1, kz1
z

Dt

eomoð Þ
Ey

n
i{1=2, jz1, kz3=2

{Ey

n
i{1=2, jz1, kz1=2

Dz

 

{
Ezjni{1=2, jz3=2, kz1{Ezjni{1=2, jz1=2, kz1

Dy

!
ð21Þ

where i, j, k indicate the x, y and z components in the

rectangular coordinate system and Dt, Dy and Dz are the

time and space increments, respectively. The dielectric

displacement components are updated using the values

of the magnetic components which have advanced with

the Dt/2 increment. The electric components, which are

assumed to be located at the same grid points as the

dielectric displacement components, are obtained

through the expression of equation (20). In this step,

the anisotropic properties of the system are imposed.

Figure 4. Definition of the computational domain and the
Yee cell used in the FDTD method. (a) TF and ST are the
total field and the scattered field respectively. Periodic
boundary conditions are used in x and y directions. The Ex

and Ey components are zero in the last layer of the PML.
(b) Ex, Ey, Ez, Hx, Hy, and Hz are the electric and magnetic
components in the rectangular (x, y, z) coordinate system.
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Now, the obtained electric components are used in

order to update the magnetic components advancing in

the Dt/2 increment [14, 18]. The electric and magnetic

components are advanced in time until a desirable

steady-state is reached. Full details of the algorithm can

be found in [28].

In the FDTD method, a total field and scattered field

(TF/SF) formulation is employed in order to generate a

monochromatic plane wave into the computational

domain. In this formulation, the computational domain

is separated into two regions as shown in figure 4. A

linearly polarized incident plane wave after implement-

ing the ideal polarizer, parallel to the x direction, is

introduced on the lower interface between the TF and

SF region in the xy plane. The linearly polarized light

propagates through the glass layer and the NLC

medium based on the FDTD computational scheme.

Due to the existence of the different media and the

variation of the NLC orientation, the linearly polarized

incident wave undergoes scattering, reflections, and

retardations. In the TF region, the incident wave and

the scattered wave are calculated according to equa-

tion (22), and in the SF region only the scattered wave is

calculated according to equation (23) [28, 30]:

Etotal~EinczEscat

Htotal~HinczHscat

ð22Þ

Escat~Etotal{Einc

Hscat~Htotal{Hinc

ð23Þ

where Etotal and Htotal are the electric and magnetic

components in the total region, Einc and Hinc are the

electric and magnetic components of the incident wave,

and Escat and Hscat are the electric and magnetic

components of the scattered wave due to the presence of

different media and the variation of the NLC orientation.

The TF/SF formulation based on the linearity of

Maxwell’s equations overcomes the difficulties and

limitations of conventional formulations such as a hard

source which causes a spurious and non-physical retro-

reflection back toward the material of interest [28]. The

TF/SF formulation approach can easily generate an

arbitrary propagation direction, polarization, time wave-

form, and duration; for more details see [28].

One important aspect for the implementation of the

FDTD is to apply efficient and effective boundary

conditions to truncate the computational domain with-

out reflecting outgoing waves back into the domain.

The perfectly matched boundary layers (PMLs)

have shown the best performance over conventional

absorbing boundary conditions (ABC), such as the Mur

ABC, for both isotropic and anisotropic media [14, 19,

28]. In the PML, boundary layers, which have fictitious

exponential conductivities varying along the normal to

the tangential electric components, surround the com-

putational domain of interest. Any arbitrary waves

from the domain enter the PML layers through the

interface between the PML layer and the domain of

interest with no reflection, regardless of angle of

incidence and medium types. The entering waves are

attenuated exponentially due to the exponential con-

ductivities normal to the interface [14, 19, 28]. In other

words, the PML is an artificial medium which absorbs

all waves leaving the computational space of interest

without reflecting the waves back into that

space. Therefore, the PML provides no numerical

artificial reflections that result from truncating the

computational domain. In order to implement the PML

for an anisotropic medium such as NLCs, the magnetic

field H and the electrical displacement D are used

instead of the electric field E in order to avoid the

difficulties arising from employing the reflectionless

interface for the anisotropic medium. The formulation

for the PML has been successfully utilized for LC

applications [13, 14, 23]. In spite of accuracy and

robustness of the PML in FDTD, one difficulty arises

from splitting the components of the D and H fields. In

the three-dimensional case, the six components of the D

and H fields yield 12 subcomponents denoted as Dxy,

Dxz, Dyz, Dyx, Dzx, Dzy, Hxy, Hxz, Hyz, Hyz, Hzx, Hzy

[32]. For example, the Dz term and Hz are split follows:

LDzx

Lt
~sxDzx~

L HyzzHyz

� �
Lx

ð24Þ

LDzy

Lt
~syDzy~{

L HxyzHxz

� �
Ly

ð25Þ

LHzx

Lt
~s�xHzx~{

L DyzzDyx

� �
Lx

ð26Þ

LHzy

Lt
~s�yHzy~

L DxyzDxz

� �
Ly

ð27Þ

where the parameters sx, sy, s�x, and s�y are the PML

conductivities for the dielectric displacement and the

magnetic field, respectively. These equations reduce to

the initial Maxwell’s equations where the PML con-

ductivities are equal to zero. Consequently, additional

computational resources are required for the PML

implementation. A simplified PML formulation without

splitting the involved D and H components is called the

unsplit PML method and has been proposed and

successfully implemented in 2D and 3D problems, for

isotropic and anisotropic media [30, 33]. In our study,
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the unsplit PML method is used to truncate the

computational domain. For example, the expression

of the unsplit PML in the x direction after meeting two

requirement conditions is given by [33]:

jv 1z
s xð Þ
iveo

� �{1

Dx~co
LHz

Ly
{

LHy

Lz

� �
ð28Þ

jv 1z
s xð Þ
iveo

� �
Dy~co

LHx

Lz
{

LHz

Lx

� �
ð29Þ

jv 1z
s xð Þ
iveo

� �
Dz~co

LHy

Lx
{

LHx

Ly

� �
ð30Þ

where s(x) is the PML conductivity with respect to the x

direction. In addition, the tangential components of the

electric field are zero in the last layer of the PML,

as required by the perfect conductor boundary

condition. The performance and stability of the

unsplit PML are well described in [30].

When the computational domain is completely

surrounded by the supporting glasses and the PML

layers, this leads to generation of undesirable artificial

ringing at the corners of the structure due to artificial

diffractions of the incident wave at these corners, as

pointed out in [13, 22]. An alternative form for the

boundary conditions is to use periodic boundary

conditions (PBC) in the transverse, x and y directions

instead of the PML [13, 14, 23]. The PML are

implemented in the light propagation z direction,

parallel to the supporting glasses and the PBC are

implemented in transverse, x and y directions.

The magnitude and phase of the electric and

magnitude field are obtained after a sufficient time

delay until the steady state optical response is reached.

3. Computational modelling results

Numerical applications of the FDTD method will be

carried out for two general cases: (i) singular line

defects, known as thins [34], and (ii) a non-singular line

defect, known as thicks [34]. In our study, the optical

simulations will be focused on the vicinity of the defect

cores in which a high rate of spatial variations of the

anisotropic dielectric tensor is observed in the lateral

directions. The same singular and non-singular director

fields used for the optical simulations using the

aggregate model [15], will be considered in our study

in order to compare it with the FDTD and Berreman

methods. The singular and non-singular director fields

used in the optical computations are solutions to

the classical equations of nematostatics using the

one-constant approximation and are discussed by de

Gennes and Prost [34].

3.1. Singular line defects

Using a rectangular (x, y, z) coordinate system, a wedge

disclination line along the z direction is described by a

planar director field of the form [15, 34].

n x, yð Þ~ nx, ny, 0
� �

~ cos w x, yð Þ, sin w x, yð Þ, 0ð Þ,

w~s tan{1 y

x

	 

zc ð31Þ

where w is the angle between the local director and the x

axis, c is a constant and s represents the strength of the

disclination. The sign of s denotes the sense of director

rotation when encircling the defect, and the magnitude

of s describes the amount of rotation. The values of s

are quantized: s5¡1/2, ¡1, ¡3/2, …, and since the

elastic energy of the defect scales with s2, lower index

defects are observed [34]. For optical calculations the

important features of the singular lines are: (i) the

length scale associated with the defect core is a grid

point—in reality the defect core radius rc has dimen-

sions in the nano-scale and much smaller than

the wavelength of light used in polarizing optical

Figure 5. Director profiles in the xy plane for singular
disclination lines, of strength (a) s~z1=2 and (b) s5+1.
The director field is planar: nz50.
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microscopy; (ii) the director gradients that affect the

optical output n/x and n/y increase towards the core of

he defect; (iii) the director field is 2D planar (nz50) and

always normal to the propagation direction, (iv) besides

the nanoscopic core, there is no characteristic length

scale in the director field.

Figure 5 shows visualizations of the singular director

field for: (a) s5+1/2,c50, and (b) s5+1,c50, computed

using equation (31). Optical simulations for these two

NLC structures are computed using the FDTD, the

aggregate, and the Berreman methods, with a computa-

tional grid consisting of 70650620 rectangular Yee

cells. For the FDTD method, extra Yee cells are added

along the x and y directions in order to compensate for

the imposed PBCs, and along the z direction to

accommodate for the supporting glasses and the unsplit

PML formulation. An incident monochromatic plane

wave with free wavelength l5633 nm is generated on the

lower interface in the xy plane between the TF and SF

region in the normal incident case. The spatial discretiza-

tion is characterized by a grid size equal to l/20, which is

equivalent to Dx5Dy5Dz531.65 nm, and a dimension-

less time step of Dt55.2787610217 s is considered. The

uniaxial NLCs with ordinary refractive index, n051.5 and

extraordinary refractive index, ne51.7 are considered;

these are typical NLC values [16]. The ordinary refractive

index of the supporting glasses is assumed to be equal to

the ordinary refractive index of the NLC. In addition, the

NLC and the supporting glasses are assumed to be lossless

and non-magnetic.

Figures 6 and 7 show 2D (xy) grey scale computed

normalized optical images from the s5+1/2 and s5+1

singular defects [shown in figures (5a,b)], respectively,

according to (a) the aggregate model, (b) Bereman’s

method, and (c) FDTD. The direction of the polarizer is

along the x axis and the direction of the analyzer is

along the y axis. The vertical scales indicate the

magnitudes of the normalized optical signal. The two

crossed polarizers are considered to be ideal. The

implementation of the ideal polarizers is employed

according to [14]. The analyzer is implemented after the

steady-state response of the electric and magnetic field is

obtained.

Figures 6 and 7 show that the three optical methods

capture the typical brush features observed in NLC

under crossed polarizers, where the number of dark

brushes is equal to four times the absolute value of the

defect strength |s| [34]; in figure 6 there are two brushes

because s51/2, while in figure 7 there are four brushes

because s51. The optical images of the two singular

defects obtained using the aggregate model are in good

agreement with the results of Nicholson [15]. The

Berreman method generates the same optical images

as the aggregate model due to the similar assumptions

of the two matrix–type methods in the normal incidence

case. Unlike the matrix-type methods, the FDTD

method generates the cross–dark band through the

defect core, as shown in figures 6 (c) and 7 (c), which

is not observed in the matrix-type methods. This

cross–dark band optical image is in agreement with

the experimental optical images shown in figure 12.6 of

ref. [4] for s51 and s~1=2 disclination lines.

Figure 6. Optical images of the normalized intensity of the
transmitted light in the normal incidence case for s~z1=2:
(a) the aggregate model, (b) Berreman’s method, and (c)
FDTD method.
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To quantify the differences between the three

methods the normalized optical intensity (NOI) was

computed and further analyzed. For brevity we use the

following nomenclature to identify the NOIs: NOIag

refers to the aggregate model, NOIB to Berreman’s, and

NOIF to the FDTD method. Figures 8 and 9 show the

following set of NOIag, NOIB and NOIF profiles: (a)

Figure 7. Optical images of the normalized intensity of the
transmitted light in the normal incidence case for s5+1: (a) the
aggregate model, (b) Berreman’s method, and (c) FDTD
method.

Figure 8. Normalized transmitted optical intensity NOI
profiles from the three optical methods for the s5+1/2
singular defect: for (a) NOI as a function of x, y525;
(b) NOI as a function of x, y510; and (c) NOI as a function
of y, x535. The specific values of x and y indicate the node
number of the grid for the LC films. The defect line is located
at (x, y)5(36,26).
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NOI as a function of distance along the x direction for

y525, (b) NOI as a function of distance along the x

direction for y510, and (c) NOI as a function of

distance along the y direction for x535, corresponding

to Figures 6 and 7. The specific x and y values

correspond to the node number in the computational

domain. The defects are located at: (x, y)5(36,26).

The figures indicate that the two matrix-type methods

show slightly different results in the transmitted optical

intensity, because the aggregate model introduced by

Nicholson [15] cannot capture multiple reflections

between the different media, for instance, air to glass

and glass to LCs. The figures show that the optical

images of the transmitted light obtained between the

two matrix-type methods and FDTD do not match, as

already shown in figures 6 and 7, especially in the

central defect region. Figure 8 (c) shows that the matrix

methods display a narrow pulse signal, while the FDTD

displays a diffuse wave, which explains the presence of

the tick brush at the defect. Likewise figure 9 (c) shows

that the matrix methods predict a pulse which is absent

in the FDTD signal. The strong disagreement between

the Berreman and FDTD methods in the central defect

region is due to lateral n/x and n/y gradients of the

director field. These computations show that the FDTD

method captures additional information on the lateral

scattering effects in the LC structures that is not

captured by the matrix methods. A similar trend in

the 2D case is reported between the Berreman and

FDTD methods in [13, 23] due to the presence of

significant lateral director gradients. As expected and

confirmed by the present computations, the matrix-type

and FDTD methods predict similar results in the

boundary regions where lateral gradients in the director

field are weak. Figures 6 (c) and 8 (c) show that the

optical images of the FDTD method have a character-

istic length scale associated with the wavelength l of the

incident light (one grid size is l/20). In figure 6 (c) the

characteristic feature is the horizontal central band of

thickness l, and in figure 8 (c) it is the central dark circle

of radius l. Figures 8 and 9 show that the maximum

difference between NOIag, NOIB, and NOIF is at the

defect core (x, y)5(36,26), where lateral director

gradients are largest.

One of the properties of the FDTD method is that

derivatives of the polar and azimuthal angles with

respect to the transverse directions are taken into

account. A non-symmetrical FDTD curve is therefore

observed in contrast to the matrix-type methods [23,

33]. However, the non-symmetrical FDTD curve

reported in [23, 33] is not observed in our study because

there is no change in the sign of derivatives w/x and w/y

in the transverse directions.

Figure 9. Normalized transmitted optical intensity NOI
profiles predicted by the three optical methods for the s5+1
singular defect: for (a) NOI as a function of x, y525; (b) NOI
as a function of x, y510; and (c) NOI as a function of y,
x535. The specific values of x and y indicate the node number
of the grid for the LC films. The defect line is located at
(x, y)5(36,26).
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3.2. Non-singular line defects

A non-singular defect of strength s5+1, shown in

figures 10 (a,b), emerges when the director escapes into

the third dimension in order to lower the total elastic

energy [34], giving rise to experimentally observed so-

called thick lines. Figure 10 (a) shows a transverse cut

with respect to the non-singular core of strength s5+1

which aligned along the z direction. The projection of

the director field on the xy plane is radial and

axisymmetric. Figure 10 (b) shows a side view, showing

how the director tilts away from the z direction as the

radial distance from the non-singular core increases.

The axisymmetric NLC structure of the non-singular

defect can be expressed in a rectangular (x, y, z)

coordinate system by [26]:

n x, yð Þ~ nx x, yð Þ, ny x, yð Þ, nz x, yð Þ
� �

~

cos w cosh, sin w cosh, sinhð Þw~

s tan{1 y

x

	 

, h~2 tan{1 ro

r

	 

{

p

2
, r2~x2zy2

ð32Þ

where h is the director tilt angle measured from the z

axis, w is the director twist angle measured from the x

axis, r is the distance from the core, and rO is the radial

distance form the defect axis. The tilting of the director

away from the xy plane is characterized by two values:

for r~0, h~p=2; for r~ro, h~0: ð33Þ

For optical calculation the important features of the

non-singular lines are: (i) the length scale associate with

the defect r0—in reality r0 has dimensions in the micron-

scale and is of the order of magnitude of the wavelength

of light used in polarizing optical microscopy; (ii) the

director gradients that affect the optical output are n/x

and n/y; (iii) the director field is 3D (nz?0). The main

difference in the director field between the singular and

non-singular s5+1 lines is the director tilting effect and

the length scale of the defect core.

The optical simulation of the non-singular defect

mentioned were carried out by the FDTD, the aggregate

and Berreman’s methods. All optical simulations for the

non-singular line defects were carried out using

the same procedure and the same parameters used for

the optical simulations of singular line defects in the

previous section.

Figure 11 shows the optical images for an s5+1 non-

singular defect according to (a) aggregate model, (b)

Berreman’s method, and (c) the FDTD method. The

images correspond to the typical Maletese cross. The

optical image of the non-singular case obtained using

the aggregate model is in good agreement with the

results by Nicholson [15]. Figure 11 shows that in

contrast to the singular s5+1 defect, the FDTD method

generates optical images geometrically similar to the

two matrix-type methods, due to the homeotropic

orientational structure in the central region around

the core, where the transmitted light is therefore

extinguished by the analyzer and where the stratified

assumption can be justified. The main difference

between the FDTD image and the matrix method

images is that the Maletese cross in the latter has

expanded.

It is expected that the two matrix-type methods,

aggregate and Berreman, generate similar optical

images and there is little magnitude difference in the

normalized transmitted optical intensity, because the

multiple reflections between the different media are not

taken into account in the aggregate model, as explained

in the previous section and shown in figure 12. In

contrast to the previous results, the FDTD method

generates similar optical images to the two matrix-type

methods, as shown in figure 11, due to the director

tilting in the central region around the core, where the

transmitted light is therefore extinguished by the

analyzer and the stratified assumption can be justified.

Figure 10. Director profiles in the xy plane for non-singular
disclination lines: (a) s5+1; (b) the director field is non-planar,
and the director escapes into the third (z) dimension.
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Figure 11. Optical images of the normalized intensity of the
transmitted light in the normal incidence case for the s5+1
non-singular defect: (a) the aggregate model, (b) Berreman’s
method, and (c) the FDTD method.

Figure 12. NOI profiles predicted by the three optical
methods for the s5+1 non-singular defect: for (a) NOI as a
function of x, y52; (b) NOI as a function of x, y513; and
(c) NOI as a function of y, x566. The specific values of x
and y indicate the node number of the grid for the LC films.
The defect line is located at (x, y)5(36,26).
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Disagreement between the matrix-type and the FDTD

methods appears toward the boundary region where

the director tilting disappears. In other words the

director tilting weakens the lateral gradient effect.

This weaking effect is at a minimum far from the

defect and maximum at the defect core. In figure 12

we see that the three signals overlap at the defect

core, and that the deviations grow with distance from

the core.

Lastly, we compare the optical output from singular

and non-singular s5+1 defect lines, briefly discussed in

connection with figures 6 (c) and 7 (c). Figure 13 shows

the NOI as a function of x, at y510, computed using

the FDTD method. The signal from the singular

defect shows a large amplitude double pulse, while

the non-singular defect produces a diffuse small

amplitude single pulse. The characteristic length scale

in the signal of the non-singular defect is the width of

the computational domain, and corresponds to

the length scale associated with the defect core region,

ro. On the other hand the characteristic length scale

of the signal from the singular defect is approximately

20 length units, which corresponds to the wavelength of

the incoming light source. The FDTD method is an

efficient computational scheme to detect defect types

and of high sensitivity to complex non-planar director

fields.

4. Conclusions

Three-dimensional optical simulations for singular and

non-singular line defects have been performed using the

aggregate model, the Berreman’s method, and the

FDTD method; the former are algebraic matrix

methods while the latter is based on numerical solutions

to the Maxwell partial differential equations.

The implementation complexity of the FDTD method

is more than compensated by the sensitivity of the

computed optical intensity to lateral director gradients

in the plane normal to the direction of incident

light. While the matrix methods are insensitive to

lateral director gradients, and over predict light

transmission in the immediate vicinity of singular

defects, the FDTD method predicts no transmission,

in agreement with experiments. In addition, when

comparing singular and non-singular line defects, the

FDTD method is highly sensitive to the director escape

into the third dimension, thus being capable of

differentiating planar from non-planar director fields.

These features of the FDTD method are highly relevant

to the further development of LC biosensors and to the

use of rheo-optics to characterize liquid crystalline

polymers.
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